A-NICE-MC: Adversarial Training for MCMC

نویسندگان

  • Jiaming Song
  • Shengjia Zhao
  • Stefano Ermon
چکیده

Existing Markov Chain Monte Carlo (MCMC) methods are either based on generalpurpose and domain-agnostic schemes, which can lead to slow convergence, or problem-specific proposals hand-crafted by an expert. In this paper, we propose ANICE-MC, a novel method to automatically design efficient Markov chain kernels tailored for a specific domain. First, we propose an efficient likelihood-free adversarial training method to train a Markov chain and mimic a given data distribution. Then, we leverage flexible volume preserving flows to obtain parametric kernels for MCMC. Using a bootstrap approach, we show how to train efficient Markov chains to sample from a prescribed posterior distribution by iteratively improving the quality of both the model and the samples. Empirical results demonstrate that A-NICE-MC combines the strong guarantees of MCMC with the expressiveness of deep neural networks, and is able to significantly outperform competing methods such as Hamiltonian Monte Carlo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generative Adversarial Networks as Variational Training of Energy Based Models

In this paper, we study deep generative models for effective unsupervised learning. We propose VGAN, which works by minimizing a variational lower bound of the negative log likelihood (NLL) of an energy based model (EBM), where the model density p(x) is approximated by a variational distribution q(x) that is easy to sample from. The training of VGAN takes a two step procedure: given p(x), q(x) ...

متن کامل

Genetic algorithms and Markov Chain Monte Carlo: Differential Evolution Markov Chain makes Bayesian computing easy

Evolution: easy Bayesian computing for real parameter spaces. Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carl...

متن کامل

Tional Training of Energy Based Models

In this paper, we study deep generative models for effective unsupervised learning. We propose VGAN, which works by minimizing a variational lower bound of the negative log likelihood (NLL) of an energy based model (EBM), where the model density p(x) is approximated by a variational distribution q(x) that is easy to sample from. The training of VGAN takes a two step procedure: given p(x), q(x) ...

متن کامل

A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces

Differential Evolution (DE) is a simple genetic algorithm for numerical optimization in real parameter spaces. In a statistical context one would not just want the optimum but also its uncertainty. The uncertainty distribution can be obtained by a Bayesian analysis (after specifying prior and likelihood) using Markov Chain Monte Carlo (MCMC) simulation. This paper integrates the essential ideas...

متن کامل

Orthogonal parallel MCMC methods for sampling and optimization

Monte Carlo (MC) methods are widely used in statistics, signal processing and machinelearning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC)algorithms. In order to foster better exploration of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have beenrecently introduced. In this work, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017